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Abstract

We review genetic programming principles, their application to FOCUS data sam-
ples, and use the method to study the doubly Cabibbo suppressed decay D+ →
K+π+π− relative to its Cabibbo favored counterpart, D+ → K−π+π+. We find
that this technique is able to improve upon more traditional analysis methods. To
our knowledge, this is the first application of the genetic programming technique to
High Energy Physics data.

Key words: Genetic Programming, Event Selection, Classification
PACS: 02.50.Sk, 07.05.Kf, 13.25.Ft

1 Introduction

Genetic programming is one of a number of machine learning techniques in
which a computer program is given the elements of possible solutions to the
problem. This program, through a feedback mechanism, attempts to discover
the best solution to the problem at hand, based on the programmers definition
of success. Genetic programming differs from machine learning solutions such
as genetic algorithms and neural networks in that the form or scope of the
solution is not specified in advance, but is determined by the complexity of
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the problem. We have applied this technique to the study of a doubly Cabibbo
suppressed branching ratio of D

+ since this measurement is presumed to be
reasonably free of Monte Carlo related systematic errors. To our knowledge,
this is the first application of the genetic programming technique to high
energy physics data, although we have recently become aware of a Monte
Carlo study [1] for the ATLAS experiment.

First, we review the basics of genetic programming and explain how genetic
programming is used on FOCUS data. Next, we show the results of applying
genetic programming techniques to the doubly Cabibbo suppressed decay 1

D
+ → K

+π+π−, measure its branching ratio relative to the Cabibbo favored
decay, and compare our results with a published analysis using more conven-
tional methods. Finally, we describe studies of systematic errors related to the
genetic programming method.

2 Introduction to Genetic Programming

We have adopted the tree representation and nomenclature of Koza [2] as our
genetic programming model. Throughout this paper, we will use the terms
“tree,” “program,” and “individual” interchangeably. Other, more general,
representations also exist [3]. The specific implementation used is lil-gp [4]
from the Michigan State University GARAGe group [5]. In this representa-
tion, the Genetic Programming Framework (GPF) creates a program which
consists of a series of linked nodes. Each node takes a number of arguments and
supplies a single return value. There are two general types of nodes: functions
(or operators) and terminals (variables and constants). Functions take one or
more input variables; terminals take no inputs and supply a single value to
the program. In practice, the argument and return “values” can be any data
structure, but in our case they are single floating point numbers.

This series of linked nodes can be represented as a tree where the leaves of
the tree represent terminals and operators reside at the forks of the tree. For
example, Fig. 1 shows the representation of the function (p× p)− (p+40). To
“read” trees in this fashion, one resolves the sub-trees in a bottom-up fashion.

The genetic programming model seeks to mimic the biological processes of
evolution, treating each of these trees or programs as an “organism.” Through
natural selection and reproduction over a number of generations, the fitness
(i.e., how well the program solves the specified problem) of a population of
organisms is improved.

1 Throughout this paper, charge conjugate states are implied.
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Fig. 1. Tree representation of the equation (p × p) − (p + 40).

The process of determining the best (or nearly best) solution to a problem in
genetic programming involves a series of steps:

(1) Generate an initial population of “programs” to be evaluated.
(2) Determine the fitness of each of these programs in solving the problem

at hand.
(3) Select which of these programs are allowed to contribute to the next

generation.
(4) Using these selected programs, generate the next generation using bio-

logical models.
(5) Repeat steps 2–4 a number of times.
(6) Terminate and evaluate the best solution(s).

2.1 Initial tree generation

The initial trees to be evaluated are created in one of two ways. The first,
termed “grow,” randomly selects either a terminal or a function as the first
(top) node in the tree. If a function is selected, the “child” nodes required by
that function are again randomly selected from either functions or terminals.
Growth is stopped either when all available nodes have been filled with ter-
minals or when the maximum depth (measured from top to bottom) for the
tree is reached (at which point only terminals are chosen).

The second method, termed “full,” proceeds similarly, except only functions
are chosen at levels less than the desired depth of the initial tree and only
terminals are selected at the desired depth. Typically one specifies a range of
depths, which results in subpopulations of differing complexity.

In the initial generation, every tree in the population is guaranteed to be
unique. 2 Later generations are allowed to have duplicate individuals.

2 This is not quite accurate. Every tree within a sub-process is unique; we run with
up to 40 sub-processes, as explained later.
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For a wide range of problems it has been observed that generating half the
initial population with the grow method and the other half with various depths
of full trees provides a good balance in generating the initial population.

2.2 Fitness evaluation

Central to genetic programming is the idea of fitness. Fitness is the measure
of how well the program, or tree, solves the problem presented by the user.
The GPF we use requires the calculation of standardized fitness such that the
best possible solution will have a fitness of 0 and all other solutions will have
positive fitness values. The exact definition of the standardized fitness is left
to the programmer.

Another useful quantity is the adjusted fitness,

fa(i) =
1

1 + fs(i)
(1)

where fa(i) is the adjusted fitness of the ith individual and fs(i) is the standard-
ized fitness of the same individual. One can readily see that as fs decreases,
fa increases to a maximum of 1.0.

2.3 Survival selection

To mimic the evolutionary process of natural selection, the probability that a
particular tree will pass some of its “genetic material,” or instructions, on to
the next generation must be proportional in some way to the fitness of that
individual.

In genetic programming, several kinds of selection are employed. The first
is “fitness-proportionate,” in which the probability, pi, of selection of the ith

individual is

pi =
fa(i)

∑

j fa(j)
(2)

where j sums over all the individuals in a population. In this way, very fit
individuals are selected more often than relatively unfit individuals. This is
the most common method of selection in genetic programming.

For complicated problems which require larger population sizes, “fitness-over-
selection” is often used. In this method, the population is divided into two
groups, a small group of “good” individuals and a larger group of the remaining
individuals. The majority of the time, an individual is selected from the smaller
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group, using the rules for fitness-proportionate selection. The rest of the time,
the individual is selected from the larger group, again with the same rules.

In our implementation, the small group contains the best individuals which
account for (320/population size) of the total adjusted fitness. E.g., for a
population size of 4000, the small group contains the individuals summing to
8% of the total adjusted fitness. Individuals are selected from this small group
80% of the time.

Additional types of selection are sometimes used in genetic programming.
These include “tournament,” in which two or more individuals are randomly
chosen and the best is selected, and “best,” in which the best individuals are
selected in order.

2.4 Breeding algorithms

The process of creating a new generation of programs from the preceding gen-
eration is called “breeding” in the genetic programming literature. The similar
sounding term, “reproduction,” is used in a specific context as explained be-
low.

The methods used to produce new individuals are determined randomly; more
than one method can be (and is) used. Each of these methods must select one
or more individuals as “parents.” The parents are selected according to the
methods described above. The GPF we are using implements three such meth-
ods: reproduction, crossover, and mutation. Other methods, e.g. permutation,
also exist [2].

2.4.1 Reproduction

“Reproduction” might also be called cloning or asexual reproduction. The se-
lected individual is simply copied into the next generation without alteration.

2.4.2 Crossover

“Crossover,” or sexual reproduction, randomly selects two parent trees and
creates two new trees. In an attempt to mimic DNA exchange between two
parents, a node is selected on each tree, those nodes and all child nodes are
removed from the parent trees and inserted into the vacant spot in the other
tree. This process is illustrated in Fig. 2.
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Fig. 2. Example of crossover. Shown are the two parents (a) and (b) and the two
resulting children (c) and (d). The crossover points chosen are designated with the
dashed ovals.

2.4.3 Mutation

In mutation, a single parent is selected. A node on the tree is selected, the
existing contents and any child nodes are destroyed, and a new node (terminal
or function) is inserted in its place. New nodes are inserted following the rules
for growing the initial trees. Both the tree and mutation point are selected
randomly. An example of mutation is shown in Fig. 3.

Typically the amount of mutation is kept small since it is exploring new pa-
rameter space, not parameter space that has proven to be interesting already.
However, as in biological processes, mutation may be important to preserve or
increase diversity. Note that mutation beginning with the first node is equiv-
alent to generating a completely new individual.
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Fig. 3. Example of mutation. Shown are the parent (a) and the resulting child (b).
The mutation point is denoted by the dashed oval.

2.5 Migration

Although not part of early genetic programming models, we use migration
of individuals as an important element of generating diversity. In our parallel

genetic programming model, sub-populations (or “islands”) are allowed to
evolve independently with exchanges between sub-populations taking place
every few generations. Every ng generations, the best ni individuals from each
sub-population are copied into every other sub-population. After this copying,
they may be selected by the methods discussed above for the various breeding
processes.

This modification to the method allows for very large effective population to
be spread over a large number of computers in a network.

2.6 Termination

When the required number of generations have been run and all the individuals
evaluated, the GPF terminates. At this point, a text representation of the best
tree (not necessarily from the last generation) is written out and other cleanup
tasks are performed.
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3 Combining Genetic Programming with High Energy Physics

Data

While genetic programming techniques can be applied to a wide variety of
problems in High Energy Physics (HEP), we illustrate the technique on the
common problem of event selection: the process of distinguishing signal events
from the more copious background processes. Event selection in HEP has typ-
ically been performed by what we will call the “cut method.” The physicist
constructs a number of interesting variables, either representing kinematic ob-
servables or a statistical match between data and predictions. These variables
are then individually required to be greater and/or less than some specified
value. This increases the purity of the data sample at the expense of selection
efficiency. Less commonly, techniques which combine these physics variables
in pre-determined ways are included. Genetic programming makes no pre-
supposition on the final form of a solution.

The charm photoproduction experiment FOCUS is an upgraded version of
FNAL-E687 [6] which collected data using the Wideband photon beamline
during the 1996–1997 Fermilab fixed-target run. The FOCUS experiment uti-
lizes a forward multiparticle spectrometer to study charmed particles produced
by the interaction of high energy photons (〈E〉 ≈ 180 GeV) with a segmented
BeO target. Charged particles are tracked within the spectrometer by two sil-
icon microvertex detector systems. One system is interleaved with the target
segments [7]; the other is downstream of the target region. These detectors
provide excellent separation of the production and decay vertices. Further
downstream, charged particles are tracked and momentum analyzed by a sys-
tem of five multiwire proportional chambers [8] and two dipole magnets with
opposite polarity. Three multicell threshold Čerenkov detectors are used to
discriminate among electrons, pions, kaons, and protons [9]. The experiment
also contains a complement of hadronic and electromagnetic calorimeters and
muon detectors.

To apply the genetic programming technique to FOCUS charm data, we begin
by identifying a number of variables which may be useful for separating charm
from non-charm. We also identify variables which may separate the decays of
interest from other charm decays. Many of the variables selected are those we
use as cuts in traditional analyses, but since genetic programming combines
variables not in cuts, but in an algorithmic fashion, we also include a number
of variables that may be weak indicators of charm or the specific decay in
question. For instance, we have included variables that attempt to provide an
indicator of opposite (or away) side charm.
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3.1 Definition of Fitness

For the doubly Cabibbo suppressed decay D
+ → K

+π+π−, we are looking for
very small signals. The fitness of a tree, as returned to the GPF, describes
how small the error on a measurement of BR(D+ → K

+π+π−)/BR(D+ →
K
−π+π+) will be.

We would like to maximize the expected significance of the possible signal,
SDCS/

√
SDCS + BDCS, where SDCS and BDCS are the doubly Cabibbo sup-

pressed signal and background, respectively. 3 However, with a small number
of signal events and a very large search space, this method is almost guaranteed
to optimize on fluctuations. Instead, one may choose to predict the number of
signal events, SDCS, from the behavior of the corresponding Cabibbo favored
decay mode. In our test of this method on D

+ → K
+π+π−, we use the PDG

branching ratio to estimate our sensitivity. Assuming equal selection efficien-
cies, SCF (the signal yield in the Cabibbo favored mode) is proportional to the
predicted number of doubly Cabibbo suppressed events. SCF is determined by
a fit to the Cabibbo favored invariant mass distribution and BDCS is deter-
mined by a linear fit over the background range (excluding the signal region)
in the doubly Cabibbo suppressed invariant mass distribution.

However, because we are still optimizing based on B from the doubly Cabibbo
suppressed mass plot, we must be concerned about causing downward fluctu-
ations in BDCS which would appear to improve our significance. (To a much
lesser extent, we must be concerned about upwardly fluctuating the Cabibbo
favored signal.) We address this in two ways. First, we apply a penalty to
the fitness (or significance) based on the size of the tree; i.e., we attempt to
ensure that any increase in the tree size is making a significant contribution
to reducing the background (or increasing the signal), not just changing a few
events. 4 Second, we optimize the significance only on even-numbered events.
We can then look at the odd-numbered events to assess any biases.

Because the genetic programming framework is set up to minimize, rather than
maximize, the fitness and because we want to enhance differences between
small changes in significance, we minimize the quantity

Spred + BDCS

S2
CF

× 10, 000 × (1 + 0.005 × # of nodes) (3)

3 In the example presented in this paper the number of events is such that the
Gaussian approximation is always valid.
4 This has a side effect of preferring the smaller of two algorithmically identical
solutions. It is often noted in genetic programming that significant portions of the
program may be “worthless” in loose analogy to the large amounts of DNA (introns)
in organisms that do not represent genes (this is some 99% of DNA in humans).
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where

Spred = SCF × BR(D+ → K
+π+π−)

BR(D+ → K
−π+π+)

. (4)

The relative branching ratio is taken from the PDG. This penalty factor of
0.5% per node is arbitrary and is included to encourage the production of
simpler trees. This is more fully explained in Section 6.3. Squaring

√
S + B/S

emphasizes differences between trees and multiplying by 10,000 ensures that
the average fitness is O(1).

Finally, we make two additional constraints. We require that at least 500
events, in Cabibbo favored and doubly Cabibbo suppressed modes combined,
are selected. We also require that the Cabibbo favored signal be observed at
the 6σ level. Both of these requirements ensure that a good Cabibbo favored
signal exists. Trees which fail these requirements are assigned a fitness of 100,
a very poor fitness.

While it would be preferable to maximize S/
√

S + B on signal and background
from Monte Carlo, there are a number of problems with this. First, we know
that our Monte Carlo does not reproduce backgrounds particularly well since
non-charm backgrounds are not simulated. Second, we aren’t sure the Monte
Carlo reproduces all the kinematic and other parameters of our charm signals
correctly, and we certainly don’t know that the Monte Carlo would reproduce
them correctly in all the combinations the GPF could create. We can make
limited tests of this agreement on the final product, as discussed in Section 6.1.
However, because the two Cabibbo favored and doubly Cabibbo suppressed
decay modes under study are so similar in particle ID and kinematics, we
believe we are justified in assuming that they will behave nearly identically
under various programs suggested by the GPF. 5

3.2 Functions and Variables

We supply a wide variety of functions and variables to the GPF which can be
used to construct trees. The constructed tree is evaluated for every combina-
tion. Events for which the tree returns a value greater than zero are kept. Fits
are made to determine SCF and BDCS.

Mathematical Functions and Operators: The first group of functions are
standard mathematical (algebraic and trigonometric) functions and operators.
Every function must be valid for all possible input values, so division by zero
and square roots of negative numbers must be allowed. These mathematical
functions and the protections used are shown in Table 1.

5 If close agreement between simulation and data were deemed important, a term
to ensure this could be added to the fitness definition.
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Table 1
Mathematical functions and operators. f(n) is the sigmoid function commonly used
in neural networks.

Operator Description

+

−
×
/ Divide by 0 → 1

xy x is 1st argument, y is second

log log |x|, log 0 = 0

sin

cos
√ √

|x|
neg negative of x

sign returns (−1, 0,+1)

f(n) 1/ (1 + e−n)

max Maximum of two values

min Minimum of two values

Boolean Operators: We also use a number of Boolean operators. Our
Boolean operators must take all floating point values as inputs. We define any
number greater than zero as “true” and any other number as “false.” Boolean
operators return 1 for “true” and 0 for “false.” The IF operator is special;
it returns the value of its second operand if the value of its first operand is
true; otherwise it returns zero (or false). We also use the comparison operator,
<=>, as defined in the Perl programming language [10, pg. 87]. This operator
returns −1 if the first value is less than the second, +1 if the opposite is true,
and 0 if the two values are equal. The Boolean operators are listed in Table 2.

A large number of variables, or terminals, are also supplied. These can be
classified into several groups: 1) vertexing and tracking, 2) kinematic variables,
3) particle ID, 4) opposite side tagging, and 5) constants. All variables have
been redefined as dimensionless quantities.

Vertexing Variables: The vertexing and tracking variables are mostly those
used in traditional analyses [6]: `/σ`, isolation cuts, vertex CLs and isola-
tions, etc. The tracking χ2 variables which are calculated by the wire chamber
tracking code [8] are not generally used in analyses. The vertexing and tracking
variables are shown in Table 3.

12



Table 2
Boolean operators and the comparison operator.

Operator Description

>

<

AND

OR

NOT

XOR True if one and only one operand is true

IF 2nd value if 1st true, 0 if false

<=> >→ +1, <→ −1, =→ 0

Table 3
Vertexing and tracking variables. The tracking χ2 variables differ by species.

Variable Units Description

` cm Distance between production and decay vertices

σ` cm Error on `

`/σ` — Significance of separation between vertices

ISO1, ISO2 — Isolation of production and decay vertices

OoM σ Decay vertex out of material

POT σ Production vertex out of target

CLP, CLS — CL of production and decay vertices

σt ps Lifetime resolution

χ2
K , χ2

π1
, χ2

π2
— Track χ2 for K , π, π

Kinematic Variables: Of the kinematic variables, most are familiar in HEP
analyses. The most prominent exception is Σp2

T which is the sum of the
squares of the daughter momenta perpendicular to the charmed parent direc-
tion. When large, this variable means the invariant mass of the parent particle
is generated by large opening angles rather than highly asymmetric momenta
of the daughter particles. In this category, we also include binary variables
NoTS and TS which represent running before and after the installation of a
second silicon strip detector [7]. The kinematic variables are shown in Table 4.

Particle Identification: For particle ID, we use the standard FOCUS
Čerenkov variables [9] for identifying protons, kaons, and pions. We also in-
clude Boolean values from the silicon strip tracking code for each of the tracks
being consistent with an electron (zero-angle) and the maximum CL that one

13



Table 4
Kinematic variables.

Variable Units Description

#τ — Lifetime/mean lifetime

p GeV/c Charm momentum

pT GeV/c p transverse to beam

Σp2
T GeV2/c2 Sum of daughter p2

T (see text)

merr MeV/c2 Error on reconstructed mass

TS 0, 1 Early, late running

NoTS 0, 1 Opposite of TS

Table 5
Particle ID variables.

Variable Units Description

∆πK1 — K not π

πcon1 — π consistency, first pion

πcon2 — π consistency, second pion

µmax — Maximum µ CL of all tracks

Ke, πe1, πe2 0/1 (True/False) Electron consistency from silicon tracker

of the decay tracks is a muon. The particle ID input variables are shown in
Table 5.

Opposite Side Tagging: Since genetic programming needn’t cut on vari-
ables we have investigated some possible methods for opposite (or away) side
tagging. Any cut on such tagging methods is too inefficient to be of any use,
but in combination with other variables, variables representing the probability
of the presence of an opposite side decay may be useful. Three such variables
were formed and investigated. The first attempts to construct charm vertices
from tracks which are not part of the production or decay vertices. The best
vertex is chosen based on its confidence level. The second general method of
opposite side tagging is to look for kaons or muons from charm decays that
are not part of the decay vertex. (Here, tracks in the production vertex are
included since often the production and opposite side charm vertices merge.)
We determine the confidence level of the best muon of the correct charge and
the kaonicity of the best kaon of the correct charge not in the decay vertex.
The variables for opposite side charm tagging are shown in Table 6.

Constants: In addition to these variables, we also supply a number of con-
stants. We explicitly include 0 (false) and 1 (true) and allow the GPF to pick

14



Table 6
Opposite side tagging variables.

Variable Units Description

CLopp — CL of highest vertex opposite

∆W (πK)opp — Highest kaonicity not in secondary

CLµopp — Highest muon CL not in secondary

real constants on the interval (−2, +2) and integer constants on the interval
(−10, +10).

The optimization in this example uses 21 are operators or functions and 34
terminals (variables or constants).

3.3 Anatomy of a Run

Once we have defined all of our functions and terminals and defined the fitness,
we are ready to start the GPF. To recap, the steps taken by the GPF are:

(1) Generate a population of individual programs to be tested.
(2) Loop over and calculate the fitness of each of these programs.

(a) Loop over each physics event.
(b) Keep events where the tree evaluates to > 0, discard other events.
(c) For surviving events, fit the Cabibbo favored signal and doubly

Cabibbo suppressed background.
(d) Return the fitness calculated according to Eq. (3).

(3) When all programs of a generation have been tested, create another
generation by selecting programs for breeding according to the selec-
tion method. Apply breeding operators such as cross-over, mutation, and
reproduction.

(4) Every few generations, exchange the best individuals among “islands.”
(5) Continue, repeating steps 2–4 until the desired number of generations is

reached.

4 Selecting Genetic Programming Parameters

There are a large number of parameters that can be chosen within the GPF,
such as numbers of individuals, selection probabilities, and breeding probabili-
ties. Each of these can affect the evolution rate of the model and determine the
probability that the genetic programming run doesn’t have enough diversity
to reliably find a good minimum. It should be emphasized, though, that the
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Table 7
Default genetic programming parameters for studies.

Parameter Value

Generations 6

Programs/sub-population 1000

Sub-populations 20

Exchange interval 2 generations

Number exchanged 5

Selection method Fitness-over-select

Cross-over probability 0.85

Reproduction probability 0.10

Mutation probability 0.05

Generation method Half grow, half full

Full depths 2–6

Maximum depth 17

final result, given enough time, should not be affected by these choices (as-
suming sufficient diversity). The default parameters for the studies presented
in this section are given in Table 7.

In monitoring our test runs, we look at the fitness and size of each individ-
ual. We only consider individuals which have a fitness less than about 3 times
worse than the fitness of a single-node tree which selects all events. This ex-
cludes individuals where no events were selected and others where much more
signal than background was removed. We then look at average and best fitness
as a function of generation while we vary various parameters of the genetic
programming run.

In Fig. 4 we show the effects of various ways of doubling the total number
of programs examined by the genetic programming run. We begin with a run
on 20 sub-populations with 1000 individuals per sub-population and lasting 6
generations. We then double each of these quantities. One can see that either
doubling the sub-population size or doubling the number of sub-populations
gives about the same best and average fitness as the original case. However,
doubling the number of generations has a significant effect on the average and
best fitness of the population. After 12 generations (plus the initial generation
“0”), evolution is still clearly occurring.

In addition to changing the number of individuals evaluated during the genetic
programming run as discussed above, there are a number of parameters in the
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Fig. 4. Plots of fitness vs. generation for increased statistics. The points show the
average fitness for a generation and the curves show the fitness of the best individual.
The straight line shows the fitness of the initial sample. The circles and solid line
show the initial conditions: 20 sub-populations, 1000 individuals per sub-population,
and 6 generations. The squares and dashed line show the effect of doubling the
individuals per sub-population to 2000. The triangles and dotted line show the
effect of doubling the sub-populations to 40. The diamonds and dotted-dashed line
show the effect of doubling the number of generations to 12.

genetic programming framework that can be adjusted. These may change the
rate or ultimate end-point of the evolution.

In Fig. 5 we show the effect of changing some of the basic parameters of the
genetic programming framework on the evolution of the population. These
plots show the effect over 12 generations of changing the selection method,
the number of programs exchanged during the migration phase, and the size
of the initial programs generated.

Exchanging 2 rather than 5 individuals from each process every 2 generations
results in no change in the evolution rate. (For the standard case where we
have 20 CPUs each with a population of 1000, exchanging 5 individuals from
each of 20 CPUs means that 10% of the resulting sub-population is in common
with each other sub-population.)

Changing the selection method used has a dramatic effect on the evolution.
Changing from our default “fitness-over-select” method to the more common
“fitness” method results in a much more slowly evolving population. Recall
that in the standard fitness selection, the probability of an individual being
selected to breed is directly proportional to the fraction of the total fitness
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Fig. 5. Plots of fitness vs. generation for different GP parameters. The points show
the average fitness for a generation. The circles show the default settings. The
squares show the effect of changing the “full” part of the initial population gen-
eration to produce trees with depths of 2–4 (rather than the default 2–6). The
diamonds show the effect of exchanging 2 rather than 5 individuals per process in
the migration phase. The triangles show the effect of using “fitness” rather than
“fitness over-select” selection. (The fitness over-select method is used in all other
plots.)

of the population accounted for by the individual. In the fitness-over-select
method, individuals in the population are segregated into two groups based
on their fitness. Individuals which breed are selected more often from the more
fit group (which also tends to be smaller). Selection within each group is done
in the same way as for the standard fitness selection method.

Conventional wisdom is that fitness-over-selection can be useful for large pop-
ulations (larger than about 500 individuals). For smaller populations, there
are risks associated with finding local minima.

As discussed in Section 2.1, half of the trees are generated by the “full” gen-
eration method. In the default evolution plot shown in Fig. 5, the beginning
depths of these trees are from 2 to 6. So, 10% of the initial trees are of depth
2, 10% are of depth 3, etc., up to 10% of depth 6. The remaining 50% are
generated by the “grow” method. As can be seen, changing the depth of the
full trees so that trees of depth 5 and 6 are not allowed has little effect on the
evolution rate. Other, earlier studies indicate that this change may positively
affect the fitness in early generations and negatively affect the fitness of the
later generations.
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Fig. 6. Plots of fitness vs. generation for different mutation rates. The points show
the average fitness for a generation. The circles and show the default settings. The
squares show the effect of doubling the mutation probability from 5% to 10%, the
triangles show the effect of halving the mutation probability from 5% to 2.5%, and
the diamonds show the effect of eliminating mutation.

Fig. 6 shows the effect of changing the mutation probabilities. Increasing the
mutation probability from 5% to 10% (at the expense of the crossover prob-
ability) does very little to change the evolution rate. Reducing the mutation
probability to 2.5% or even 0% has a similarly small effect. However, at higher
mutation rates, we worry about the effects of too high a mutation rate on later
generations where stability should be increasing.

Fig. 7 shows the effect of reducing the number of functions used in the search.
In the first case, we removed a number of the algebraic, trigonometric, logi-
cal, and arithmetic operators. Operators such as log, xy, sin, cos, XOR, and
others were not allowed to be used. This reduces the diversity of the program
set, but may allow a minimum to be found faster if those operators are not
necessary. In another trial, we removed variables not normally used in FOCUS
analyses, such as opposite side tagging, track CLs, muon and electron mis-ID
for hadrons, etc. In a final trial we removed both non-standard variables and
questionable functions. The assumption in all three cases is the same: if the
functions or variables added to the minimal case do not positively contribute to
the overall fitness, slower evolution and possibly a worse final solution should
be observed since the useful parameter space is less well covered. That this
is not observed in the average case (which is less susceptible to fluctuations)
suggests that the “extra” functions and variables are useful and ultimately
better solutions may be found by including them.
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Fig. 7. Plots of average and best fitness vs. generation for sets of reduced functions.
For “Less operators,” (squares and dashed line) the set of arithmetic, algebraic,
and logical operators was reduced to a minimal set. For “Less Variables” (triangles
and dotted line) only “standard” analysis variables were included. For “Minimal”
(diamonds and dashed-dotted line) both reductions were employed.

For all the studies detailed so far, we used a data sample with a relatively strict
cut of `/σ` > 15. This is a very powerful cut and is an easy way to obtain a
small, highly enriched sample of D mesons, speeding up the studies. However,
the goal of our use of the genetic programming method is to try to discover
ways around making such tight cuts. Fig. 8 shows the effect of changing the
cut on the initial data sample to `/σ` > 10. One sees that while initially the
best individuals are not as pure as the `/σ` > 15 sample, parity is quickly
reached. It’s reasonable to assume that in later generations, the `/σ` > 10
selection becomes more effective as events with 10 < `/σ` < 15 (about 7.5%
of the total in the 12th generation) are included which have other indications of
being D

+ → K
−π+π+ decays. (The plots of the average never reach the same

level, but this is to be expected as the initial purity is not as good and many
programs, even at later stages, do not perform any event selection. Because of
this effect, comparing the averages of the two cases is not instructive.)

5 Testing Genetic Programming on D
+ → K

+π+π−

Having explored various settings in the GPF to determine the way to obtain
the best evolution of programs, we now investigate the ultimate performance
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Fig. 8. Plots of fitness vs. generation for different initial data samples. The default
sample (circles and solid line) has a cut of `/σ` > 15 while the “Loose” sample has
a cut of `/σ` > 10.

and accuracy of this method to measure the relative branching ratio BR(D+ →
K

+π+π−)/BR(D+ → K
−π+π+).

Recall from Eq. (3) that the GPF is attempting to minimize the quantity

BDCS + Spred

S2
CF

× 10, 000 × (1 + 0.005 × # of nodes) , (5)

where BDCS is a fit to the background excluding the ±2σ signal window and
Spred is the expected doubly Cabibbo suppressed yield determined from the
PDG value for the D

+ → K
+π+π− relative branching ratio [11] and the

Cabibbo favored signal (SCF). We exclude from the fit the expected signal
region in the doubly Cabibbo suppressed decay channel to avoid inflating
BDCS (or alternatively allowing the GPF to learn how to eliminate the doubly
Cabibbo suppressed signal). 6

To start with a data sample of manageable size, certain requirements must
be enforced on the data supplied to the GPF. For the final runs looking for
D

+ → K
+π+π−, these requirements are:

• `/σ` > 10
• CLS > 0.01

6 Since the background is fit to a straight line, including the doubly Cabibbo sup-
pressed signal would increase the apparent level of the background, reducing the
calculated sensitivity to the doubly Cabibbo suppressed decay.
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Fig. 9. The initial D+ → K−π+π+ and D+ → K+π+π− candidate distributions
(the cuts are described in the text). The linear doubly Cabibbo suppressed invariant
mass distribution is superimposed on the Cabibbo favored distribution. (No signal
is visible.)

• πcon > −8.0 for both pions
• ∆W (πK) > 1.0 for kaon
• 1.75 GeV/c2 < Mass < 1.95 GeV/c2

These requirements are applied to both D
+ → K

−π+π+ and D
+ → K

+π+π−

candidates.

The initial data sample is shown in Fig. 9. The Cabibbo favored signal domi-
nates, and the level of doubly Cabibbo suppressed candidates (the linear his-
togram) is higher than the Cabibbo favored background. The Cabibbo favored
fit finds 253 180 ± 660 events.

We select the D
+ → K

+π+π− and D
+ → K

−π+π+ events using the ge-
netic programming technique with the parameters listed in Table 8. These
parameters are similar to those used in our earlier studies, but we increase the
programs per generation and the number of generations.

Fig. 10 shows the data after selection by the GPF for the Cabibbo favored and
doubly Cabibbo suppressed decay modes. The GPF ran for 40 generations.
A doubly Cabibbo suppressed signal is now clearly visible. 62 440 ± 260 (or
about 25%) of the original Cabibbo favored events remain and 466±36 doubly
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Table 8
Genetic programming parameters for D+ → K+π+π− optimization.

Parameter Value

Generations 40

Programs/sub-population 1500

Sub-populations 20

Exchange interval 2 generations

Number exchanged 5

Selection method Fitness-over-select

Cross-over probability 0.85

Reproduction probability 0.10

Mutation probability 0.05

Generation method Half grow, half full

Full depths 2–6

Maximum depth 17
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Fig. 10. D+ → K−π+π+ (a) and D+ → K+π+π− (b) signals selected by genetic
programming. We find 62 440 ± 260 and 466 ± 36 events, respectively.

Cabibbo suppressed events are now visible. The doubly Cabibbo suppressed
background has been reduced by a factor greater than 150. All fits to doubly
Cabibbo suppressed signals use the mass and resolution determined from the
Cabibbo favored signals. The free parameters are the yield and the background
shape and level.

The evolution of the individuals in the genetic programming is shown in
Fig. 11. In addition to the variables plotted before, the average size for each
generation is also plotted. We can see that the average size reaches a minimum
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Fig. 11. Evolution of D+ → K−π+π+ programs. The open circles show the average
fitness of the population as a function of generation. The triangles show the fitness
of the best individual. The solid line shows the average size of the individuals as a
function of the generation.

at the 4th generation, nearly plateaus between the 20th and 30th generations,
and then begins increasing again and is still increasing at the 40th generation.

In Fig. 11, the average and best fitnesses seems to stabilize, but in Fig. 12 an
enlargement of the best fitness for later generations is seen. From this plot, it
is apparent that evolution is still occurring at the 40th generation and new,
better trees are still being found.

5.1 Example trees from various generations

In Fig. 13 we show four of the most fit trees from the initial generation (num-
bered 0); no evolution has taken place at this point. It is interesting to note
several things. First, the best trees are all rather small, although the average
tree in this generation is over 15 nodes in size. Second, the most fit tree in this
generation (a) is recognizable to any FOCUS collaborator: it requires that the
interaction vertex point be in the target and that the decay vertex point be lo-
cated outside of target material. The second most fit tree (b) is algorithmically
identical to the first, but has a slightly worse fitness because it is considerably
larger than the first tree. Tree (c) is nearly identical in functionality to (a)
and (b) but actually does a slightly better job of separating events than (a) or
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Fig. 12. Expanded view of evolution of D+ → K−π+π+ programs. The triangles
show the fitness of the best individuals for later generations, the same data as in
Fig. 11, but on an expanded scale.

(b). Its fitness is slightly worse because of its larger size (12 nodes vs. 5 and
10 nodes respectively).

The four best individuals from generation 2 are shown in Fig. 14. A few
observations are in order. First, the most fit tree (a) doesn’t include either
of the elements we saw in the best trees in generation 0 (OoT and POT), but
this tree is significantly more fit than any tree in generation 0. The second
best tree (b) does include these elements, mixed in with others. Also, one can
see that the fourth most fit tree (d) is quite large (44 nodes) compared to the
other best trees in the generation.

As shown in Fig. 11, the average size tree of the population reaches a mini-
mum in generation 4. One possible interpretation of this behavior is that at
this point, the GPF has determined the parts of successful solutions. Going
forward, it is assembling these parts into more complex solutions. The three
best solutions from generation four are shown in Fig. 15. The best solution
from generation four (a) is very similar to the best solution from generation
two, but with the two end nodes replaced with new end nodes. The second
and third best solutions are clearly related, with just one small difference: the
second best tree (b), with the sub-branch: OSµ <=> OoT only lets about 250
events with OoT ≤ 0 through the filter while the third best tree (c) allows
about 9300 such events through.
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Fig. 13. The four most fit trees from generation 0 of a D+ → K+π+π− run.

In Fig. 16, we can see that tree (a) and tree (b) have some pieces in com-
mon, but are quite different. They are also about equally good at separating
background from signal, but tree (b) has the larger fitness due to its larger
size.
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Table 9
Monte Carlo efficiencies for D+ → K−π+π+ and D+ → K+π+π−.

Decay mode Skim efficiency GPF efficiency

D+ → K−π+π+ 5.76 ± 0.01% 1.434 ± 0.007%

D+ → K+π+π− 5.57 ± 0.01% 1.408 ± 0.007%

6 Systematic Error Studies

As with any analysis method, the genetic programming technique may intro-
duce sources of systematic error into the analysis. In our case, there are several
ways of evaluating this possible error.

6.1 Efficiency corrections and comparison with traditional methods

When we optimize, we assume that the efficiencies of the filter trees are iden-
tical for Cabibbo favored and doubly Cabibbo suppressed decays. While we
can’t test this on the data, since we lack an observable doubly Cabibbo sup-
pressed signal in the initial sample, we can test this assumption with our
Monte Carlo. Monte Carlo simulations of ∼ 4 × 106 events in each of the two
decay modes show that the efficiencies for the doubly Cabibbo suppressed and
Cabibbo favored modes are nearly consistent. These results are summarized
in Table 9.

In the data we find 466±36 doubly Cabibbo suppressed decays and 62 440±260
Cabibbo favored decays. Along with the relative efficiencies in Table 9, this
gives a corrected branching ratio of (0.76± 0.06)%. The PDG value is (0.75±
0.16)% [11]; a recent analysis from FOCUS sets this value at (0.65 ± 0.08 ±
0.04)% [12]. The data sample used for the branching ratio measurement is
shown in Fig. 18. 7 One can see that while the standard analysis used 189±24
events, the genetic programming method finds 466± 36 with similar signal to
noise. However, the standard analysis was not optimized for S/

√
S + B, so a

direct comparison is not possible.

From this check, it is apparent that genetic programming can yield correct
results, even if we don’t understand exactly how. This study also suggests
that genetic programming can yield results with greater sensitivity than our
standard analysis methods.

7 The Cabibbo suppressed decay D+
s → K+π−π+ is also visible in this plot. We

remove this mass region to simplify fitting.
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Fig. 18. The invariant mass plot of D+ → K+π+π− from an earlier FOCUS pub-
lication [12]. The Cabibbo suppressed decay D+

s → K+π−π+ is also visible in this
plot.

6.2 Efficiency comparisons with Monte Carlo

An additional, more challenging, check against the FOCUS Monte Carlo is
possible. We can measure the efficiency of the final tree on the Monte Carlo
and data. For this study, we look at the ratios of relative efficiency:

εGP-data

εskim-data

and
εGP-MC

εskim-MC

(6)

for the Cabibbo favored decay mode which reduces to

YGP-data

Yskim-data

and
YGP-MC

Yskim-MC

, (7)

where the various Y values are the yields in Monte Carlo or data with only
the skim cuts or the skim cuts and the tree selection applied. In other words,
the efficiencies of the tree with respect to the skim on both Monte Carlo and
data should be the same if the behavior of the tree is completely modeled by
the Monte Carlo. A similar study on doubly Cabibbo suppressed decays is not
possible since the yield under the skim cuts is unknown. The results of this
study are shown in Table 10.

In this test, the genetic programming tree is very well modeled by the FO-
CUS Monte Carlo. This was unexpected. We know our Monte Carlo matches
the one-dimensional and some two-dimensional distributions of the included
variables. But to well model all trees generated by the GPF, the Monte Carlo
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Table 10
Monte Carlo and data yields D+ → K−π+π+ for skim cuts only and skim cuts plus
the final tree. The values in the final column are the ratios shown in Eq. (6).

Source Skim yield GPF yield Ratio

Data 253 190 ± 660 62 440 ± 260 24.7 ± 0.1%

Monte Carlo 236 000 ± 500 58 788 ± 245 24.9 ± 0.1%

must correctly model the interrelationships between variables — in this case,
a match in 11-dimensional space (one for each terminal in the final tree that is
a physics variable). Recall that we choose our measurement so that we don’t
require that the genetic programming tree perform the same on Monte Carlo
and data, only that the tree perform the same on Cabibbo favored and doubly
Cabibbo suppressed data. From the very similar efficiencies shown in Table 9,
we have additional evidence to believe selection by the genetic programming
tree will not be a significant source of systematic error in analyses with such
similar final states.

Should close agreement between Monte Carlo and data be required, the fitness
function can be redefined to enforce agreement.

6.3 Bias induced by genetic programming optimization

Recall that we attempt to avoid bias by assigning a 0.5% penalty to the fitness
for each node in the tree. But, the size of this penalty is arbitrary and is chosen
to be small to gently encourage the GPF to produce smaller trees.

To study the possibility that the genetic programming optimization is selecting
events based on their specific properties rather than the general properties of
all D

+ → K
+π+π− decays, we only optimize on half the events. We can

then look at the other half of the events to discover any major problems.
(We optimize on even-numbered events, so there is no problem with selecting
events from one run period over another, etc.)

In Fig. 19, we show the D
+ → K

−π+π+ candidates used and unused in the
optimization. While the used portion has a few more events, the difference is
statistically insignificant. In Fig. 20, we show the D

+ → K
+π+π− candidates;

while there are more signal events in the “used” plot, recall that this region
is masked out. It is more instructive to look at the background, since this
is susceptible to downward fluctuations. (B is determined from a linear fit
with the signal region masked out.) One can see that the background in the
two plots is nearly identical. As mentioned above, all fits to doubly Cabibbo
suppressed signals use the mass and resolution determined from the Cabibbo
favored signals.
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Fig. 19. The D+ Cabibbo favored decay candidates used (a) in the optimization and
those not used (b) as a cross check. The D+ yields are 31250± 180 and 31200± 180
events respectively.
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Fig. 20. The D+ doubly Cabibbo suppressed decay candidates used (a) in the opti-
mization and those not used (b) as a cross check.

To further study possible biases induced by the genetic programming method,
analysis of additional runs optimizing on the other half of the events and/or
with a different random seed to the GPF would be necessary. Even if there
is such a bias, it appears to be small and can easily be incorporated into the
systematic error.

6.4 Different Evolutionary Trajectories

In a traditional cut based analysis, one may choose to make measurements with
several different sets of cuts. In genetic programming, one analogous method
of assessing such variations is to change the trajectory of the evolution. We
have studied two ways of doing this. In the first case, we optimize on the odd-
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Fig. 21. The percentage of events classified differently by different trees. For an
explanation of the quantities plotted, see the text. The circles show the default
optimization, the squares show the results of optimization on odd-numbered events,
the triangles (N) show the effect of a different random number seed, and the inverted
triangles (H) show the effect of stopping the evolution at 10 generations. (Though
the five best trees are considered, identical or nearly identical trees cause the number
of visible points to be reduced.)

numbered rather than even-numbered events. (The initial trees are identical,
but their estimated fitnesses differ, causing the evolutionary paths to diverge.)
In the second, we change the random number seed at the beginning of the
process. We also show the results in the “default” case, but with only 10
rather than 40 generations of evolution.

We then investigate possible differences in three areas. The first observation is
the overlap in events between the best tree in the “default” analysis and the
best five trees from the “other” analysis. This is shown in Fig. 21. We define
two quantities: “false positives,” which are events selected by a given tree but
were rejected by the best tree in the default analysis, and “false negatives,”
which are events rejected by a given tree but selected by the best tree. 8 We
can see that in the default (even-numbered) case, there are no false positives,
but some false negatives. In the other analyses, up to 20% of the events are
classified differently by different trees.

Second, we observe the doubly Cabibbo suppressed signals obtained from the

8 Note that our terminology of false positives and negatives treats the best tree
from the default case as “true” which is not to be confused with which decays are
actually D+ → K−π+π+ or D+ → K+π+π− decays.
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best tree from each of these four different evolutionary trajectories. These are
shown in Fig. 22. In all cases, we see a very clear doubly Cabibbo suppressed
signal. We can see that the two trajectories optimizing on even-numbered
events for 40 generations [plots a) and c)] obtain similar results. Without a
large number of different runs with different seeds, it is impossible to say if
optimizing on odd vs. events would give generally similar results. However,
we can certainly see that we are gaining quite a bit from optimizing for an
additional 30 generations. (Compare a) with a 13σ significance and much
better signal-to-background ratio vs. d) with an 11σ significance.)

Finally, we measure the doubly Cabibbo suppressed branching ratio with the
five top trees in each of the four cases. Because, as shown in Table 9, the
Monte Carlo corrections to the relative efficiency are small, we simply look
at the uncorrected branching ratio, YDCS/YCF. The values for these twenty
trees are shown in Fig. 23. As expected, the five trees within each group
give nearly identical answers, while some variation is evident between groups.
Such a variation, after Monte Carlo efficiency corrections and corrections for
expected statistical fluctuations, would form a portion of the systematic error
in an analysis using this technique.

7 Conclusions

We hope we have conveyed an appropriate introduction to genetic program-
ming and how it can be applied in high energy physics analyses. We have
demonstrated the use of the technique in separating the doubly Cabibbo sup-
pressed decay D

+ → K
+π+π− from the copious background and shown that

this technique can improve upon more traditional analysis techniques. As with
any analysis technique, care must be taken to understand the possible system-
atic errors introduced by the technique. Finally, we have shown that in the
FOCUS case, the behavior of Monte Carlo and data is remarkably consistent
when the genetic programming method is applied. To our knowledge, this is
the first successful application of the genetic programming technique to HEP
data.

Other applications for this technique are easy to imagine. Flavor tagging (es-
pecially B mesons) has seen several successful implementations of neural net-
works. Genetic programming may provide another means of tagging. Neutrino
closure techniques for semi-leptonic decays may also benefit from such a tech-
nique [13, 14]. 9

9 Typically momentum conservation allows for two kinematically correct solutions.
Simple rules are usually used to guess the correct solution.
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Fig. 22. The doubly Cabibbo suppressed signals obtained from four different evolu-
tionary trajectories. a) is the default optimization (with a fitness of 0.123), b) shows
the results of optimization on odd-numbered events (fitness: 0.148), c) shows the
effect of a different random number seed (fitness: 0.148), and d) shows the effect of
stopping the evolution at 10 generations (fitness: 0.194).
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